Archive for the ‘art’ Category

The Physics of Dance

Monday, September 19th, 2011

arabesque.jpgOriginating in the elaborate courts of the Italian Renaissance in the 1400s, it developed into an art form during the 17th century in France under the reign of Louis XIV. But the elegant arabesques, exhilarating grand jetés, and energetic fouettés en tournant of ballet that we know today grew out of the Romanticism of the late 1800s, when ballerinas portrayed fairy-like creatures and almost seemed capable of floating in the air.

Have you ever wondered how a dancer can seem to defy gravity while your own feet are so firmly planted on the ground? Let’s take a closer look at gravity and discover the secrets behind some of these beautiful movements.

An article about dance should make you move, right? Here’s an experiment. Stand against a wall with your heels touching the wall. Now bend over and touch your toes. Did you make it?

Why did it suddenly become so difficult to do this simple task? The problem is the location of your center of mass: the average location of all the matter in your body. When standing straight, your center of mass lies within your body just below your belly button. It is situated above your feet, so you have no trouble standing.

But your center of mass can move depending on the position of your limbs. What if your body is horizontal? In a pas de deux, a male dancer may lift a ballerina into the air. Have you ever noticed where his hands are placed? Rather than clasping her waist or her thighs, he clasps her hips. Not only do her hipbones provide support, this is the point where her body is balanced; this is the location of her center of mass. Any closer to her belly or her thighs and the balance is upset; her center of mass is no longer above him, and he won’t be able to hold her aloft.

If your body is not straight, however, your center of mass is different. Try the experiment again. What happens to your center of mass as you bend over? By moving your torso away from the wall, you move some of your mass forward. Your center of mass also moves forward to a point somewhere in front of your upper thighs, not inside your body! Continue bending forward and at some point it will have moved out beyond your toes and you risk falling over. What do you do to keep from landing face-first on the floor? Try it and see. Can you figure out why standing against the wall makes such a difference?

Dancers instinctively know that to execute a perfect turn, their center of mass needs to be over their feet. Imagine trying to execute a turn, like a pirouette, on one foot. What happens if your center of mass is not directly over your feet? You end up with a wobbly turn, or worse, falling over!

grandjete.jpgThe center of mass also helps explain those big leaps, or grands jetés, that seem to hang effortlessly in the air. After taking a few quick steps, a dancer takes a leap, one leg leading and one trailing. During the leap her head rises a certain amount. (For some numbers and more physics, check out Dr. George Gollin’s Physics of Dance website.) As soon as she starts the leap, however, she raises her legs, i.e. some mass, to be parallel to the floor, which raises her center of mass some more. During the jump, her center of mass rises more than her head, making the leap seem even higher. What is more, her center of mass moves the most at the very beginning and end of the jump; it moves very little through most of the leap, giving the impression she is hanging in the air or floating.

We are so familiar with gravity’s pull attaching us to the ground that the light airy movements in ballet take us by surprise. The movements seem much more possible, however, when we apply a little physics and see how ballet has developed to work with gravity. The result? An art form that becomes even more exquisite!

PS. Here is another experiment. Sit in a chair, with your knees at a 90° angle, your feet flat on the floor. Now stand up without moving your feet or bending forward. How did you do? Our natural instinct is to bend forward, but try it again, without bending forward! When you sit in a chair, your center of mass lies at a point above your thighs in front of your lower belly. It is impossible to stand up in the second experiment unless you move your center of mass closer to your feet, which is what happens when you bend forward.

Merging Art and Science

Saturday, May 7th, 2011

Do you paint, write, dance, sing or sculpt?  Are you an artist who is inspired by science?  CERN may be the place for you.

The science that goes on at the laboratory has long been an inspiration for artists.  One current artist you may have heard of is Kate McAlpine, otherwise known as the rap artist Alpinekat.  She rose to fame with her hit Large Hadron Rap, which describes the Large Hadron Collider and its related science at CERN.  Check out that video and others here.

CERN, the French acronym for the European Organization for Nuclear Research, is a high-energy physics laboratory located mostly in Switzerland.  It is here that the largest accelerator in the world, the Large Hadron Collider, is located.  It spans the Swiss-French border about 330 ft (100 m) underground.  This instrument is essentially a ring, 17 mi (27 km) in circumference, consisting of a series of superconducting magnets.  The magnets serve to accelerate subatomic particles that are then smashed together in one of several detectors, each the size of a house.  The result is a spectacular computer display of brightly colored lines that look something like this:


It’s easy to see why science here can inspire artists.

Just look at the movie Angels & Demons.  Dan Brown was inspired by science at the lab when he wrote his book.  In it, the bad guys steal a canister of antimatter from a secret underground lab at CERN, and portions of the movie were filmed at the ATLAS experiment at the lab (check out the multimedia tab on the website).

Now, with ever increasing interest in merging art and science, a new experiment is taking place at CERN.  Called Great Arts for Great Science, the goal is to bring artists to the lab where they can connect with scientists and, through their art, bring science into a broader cultural setting.  And broad it is.  The gallery on the website shows examples of sculpture, music, photography, and dance.  The organization behind the project is due to Ariane Koek, a cultural specialist dedicated to arts development at CERN.  As part of the initiative, a residency program for artists at the lab is expected to launch this year, which is predicted to ease the flow of information between artists and scientists.  Artists will have the opportunity to visit the lab and talk with scientists, and support their artistic work with scientific knowledge.

But do you think this inspiration moves only from scientist to artist?  Surprisingly, the cultural exchange happens in both directions.  Great scientists often use creative thinking in solving a particularly difficult problem.  Just think of Leonardo da Vinci.  During the Renaissance, there were no strong divisions between art and science as there are today.  In spite of his work as an artist, da Vinci used his creativity to design various barricades, bridges and flying machines.  Or consider the names of the moons orbiting around Uranus.  Astronomers were inspired by the names of characters in the works of William Shakespeare and Alexander Pope.  By bringing artists to CERN, scientists will have the opportunity to tap into their artistic side and think more creatively about their projects and science in general.

As the advising scientist for Great Arts for Great Science, Michael Doser says, “Science can provide understanding, while art can provide meaning to the human enterprise.” 

By bridging art and science, we can more easily see the relevance of basic research to society and science can be allowed to engage within the larger cultural context.  There is a tight relationship between art and science in that both are ways of exploring our existence: what it means to be human and where we are in the universe.